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Abstract—In this paper, we present a novel SOC tracking
algorithm for Li-ion batteries. The proposed approach employs a
voltage drop model that avoid the need for modeling the hysteresis
effect in the battery. Our proposed model results in a novel
reduced order (single state) filtering for SOC tracking where no
additional variables need to be tracked regardless of the level
of complexity of the battery equivalent model. We identify the
presence of correlated noise that has been so far ignored in the
literature and use this for improved SOC tracking. The proposed
approach performs within 1% or better SOC tracking accuracy
based on both simulated as well as HIL evaluations.

Index Terms—Battery management system (BMS), Battery fuel
gauge (BFG), state of charge (SOC), online system identification,
adaptive nonlinear filtering, extended Kalman filter (EKF), re-
duced order filtering.

I. INTRODUCTION

The battery SOC can be estimated through two distinct
approaches: The first method, termed Coulomb counting, as-
sumes knowledge of the initial state of charge and perfect
knowledge of battery capacity to compute the remaining state
of charge after accounting for the amount of Coulombs trans-
ferred from/into the battery. This approach has the following
sources of error:
(A) Uncertainty in the knowledge of initial SOC;
(B) Uncertainty in the knowledge of battery capacity;
(C) Errors in measured Coulombs as a result of errors in the

measured current and errors in time differences due to
timing oscillator inaccuracies/drifts.

The second method of SOC estimation exploits the unique
and stable relationship between the open circuit voltage (OCV)
and SOC of the battery and allows one to compute the SOC for
a measured OCV. However, it is possible to directly measure
the OCV only when the battery is at rest. When the battery is in
use, the dynamic relationship between the battery voltage and
current has to be accounted for through parameter and state
estimation approaches. The OCV-SOC based state of charge
estimation approach has the following sources of error:

(a) Uncertainty in the modeling and parameter estimation of
the dynamic electrical equivalent model of the battery

(b) Errors in measured voltage and current.
In [25]–[27], Plett reported several battery equivalent mod-

els and an extended Kalman filter (EKF) based approach to
SOC tracking. Later, the same models were used in [28], [29]
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that reported an unscented Kalman filter (UKF) filter based
approach to SOC tracking. Similar EKF/UKF based SOC
tracking approaches with varying enhancements were reported
in [11], [12], [14], [15], [18]–[22], [30]. Some other notable
approaches for SOC tracking are presented in [10], [16], [17].

In this paper, based on the normalized OCV modeling ap-
proach of [24], robust battery equivalent circuit model (ECM)
parameter estimation approach of [6] and robust online battery
capacity estimation approach of [7] we develop a robust SOC
tracking algorithm. Other aspects of battery fuel gauge algo-
rithm development, OCV modeling, equivalent circuit model
(ECM) parameter estimation and battery capacity estimation,
can be found in the same conference proceedings in [24],
[6] and [7], respectively. The robustness of the proposed
algorithm is rooted in the normalized OCV modeling approach
presented in [24]; robustness in all other components of the
BFG, parameter estimation [6], capacity estimation [7] and
SOC tracking (present paper) are all based on normalized
OCV modeling which yields unchanged OCV-SOC curve over
temperature changes and battery aging. Extended details and
other related aspects of the robust BFG algorithm will appear
in [1]–[5], [23].

The rest of the paper is organized as follows. The system
model and a formal statement of the battery SOC tracking
problem is provided in Section II. Section III details the
proposed online SOC tracking algorithm. The performance of
the proposed SOC tracking approach is demonstrated through
experimental results in Section IV, and the paper is concluded
in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The battery equivalent circuit model considered in this paper
is shown in Figure 1. The terminal voltage v[k] in terms of
the components of the battery equivalent circuit is given by

v[k] = V0(s[k]) + i[k]R0 + i1[k]R1 + i2[k]R2 + h[k] (1)

where V0(s[k]) represents the open circuit voltage (in volts)
of the battery at time k which is written here as a function of
SOC at time k, s[k] ∈ [0, 1]; h[k] accounts for the hysteresis
in the battery voltage; i1[k] and i2[k] are the currents through
R1 and R2, respectively.

There are several nonlinear representations that approximate
the OCV as a function of SOC. For example, the well
known combined model is given in [25]. In this paper, we
adopt a novel inverse polynomial-log-linear model for the
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Fig. 1. Equivalent circuit of a battery. When the battery is at rest, V0(s[k])
is the OCV of the battery. The OCV uniquely depends on the SOC of the
battery, s[k]. When the battery is active, i.e., when there is current activity, the
behavior of the battery is represented through the dynamic equivalent circuit
consisting of a hysteresis component h[k], a series resistance R0 and two
parallel RC circuits in series, (R1, C1) and (R2, C2). The discrete time is
indicated using [k].

representation of OCV in terms of SOC:

V0(s[k]) = K0 +
K1

s[k]
+

K2

s2[k]
+

K3

s3[k]
+

K4

s4[k]
+K5s[k]

+K6 ln(s[k]) +K7 ln(1− s[k]) (2)

where K0,K1,K2,K3,K4,K5,K6 and K7 can be estimated
offline through OCV-SOC characterization.

The instantaneous change in SOC can be written in the
following form (the subscript of x is introduced to indicate a
state component)

xs[k + 1] , s[k + 1] = s[k] + ch∆i[k] (3)

where i[k] is in Amps,

ch = η/3600Cbatt (4)

is the Coulomb counting coefficient in Amp−1sec−1 (the
factor 3600 indicates Cbatt is in Ah (the commonly used unit
for capacity) rather than Coulombs), Cbatt is the capacity of
the battery in Ampere hours (Ah), ∆ is the sampling interval
in seconds and η is a constant that depends on whether the
battery is being charged or discharged, i.e.,

η =

{
ηc i[k] > 0
ηd i[k] < 0

(5)

It must be noted that (3) yields the instantaneous SOC of
the battery. This way of computing the SOC is known in the
literature as Coulomb counting. We also refer to this as the
“predicted SOC” in this paper.

The current i[k] is measured and the current measurement
is subject to errors. The measured current zi[k] is written as

zi[k] = i[k] + ni[k] (6)

where ni[k] is the current measurement noise, which is con-
sidered white, zero-mean and with known standard deviation
(s.d.) σi.

The state equation (3) can be rewritten by substituting zi[k]
for i[k] according to (6) as follows

xs[k + 1] = xs[k] + ch∆zi[k]− ch∆ni[k] (7)

The currents through the resistors R1 and R2 can be written
in the following form

xi1 [k + 1] , i1[k + 1] = α1i1[k] + (1− α1)i[k] (8)
xi2 [k + 1] , i2[k + 1] = α2i2[k] + (1− α2)i[k] (9)

where

α1 = e−
∆

R1C1 (10)

α2 = e−
∆

R2C2 (11)

By substituting the measured current zi[k] for i[k], the
currents in (8) and (9) can be rewritten as follows

xi1 [k + 1] = α1xi1 [k] + (1− α1)zi[k]− (1− α1)ni[k] (12)

xi2 [k + 1] = α2xi2 [k] + (1− α2)zi[k]− (1− α2)ni[k] (13)

The hysteresis voltage h[k] is a nonlinear function of the
load current and SOC of the battery [25]. The hysteresis
process can be written as

xh[k] , h[k] = fh(xs[k], i[k])xh[k] + nh[k] (14)

where nh[k] is the process noise of the hysteresis model which
is assumed white, zero-mean Gaussian and with s.d. σh. In this
paper, we model hysteresis as the error in the predicted OCV
of the BFG. More details can be found in Section III.

The voltage in (1) is a measured quantity and the measured
voltage zv[k] is subject to errors. The measured voltage is
written as

zv[k] = v[k] + nv[k]

= V0(s[k]) + i[k]R0 + i1[k]R1 + i2[k]R2

+h[k] + nv[k] (15)

where nv[k] is assumed to be white Gaussian noise with zero
mean and s.d. σv .

Now, by substituting (6), (8), (9) and (14), in (15), the
following measurement model is derived

zv[k] = V0(xs[k]) + zi[k]R0 + xi1 [k]R1 + xi2 [k]R2

+xh[k] + nzv [k] (16)

where

nzv [k] = nv[k]−R0ni[k] (17)

Now, given the instantaneous voltage and current measure-
ments, zv[k] and zi[k], the objective of BFG is to track the
instantaneous SOC of the battery xs[k]. The presence of “nui-
sance” variables xi1 [k], xi2 [k], and xh[k] in the observation
model (16) makes it a joint estimation problem, i.e., SOC and
these variables have to be jointly estimated.

In addition, the following model parameters need to be
estimated through system identification techniques:
• Battery capacity: Cbatt



• Open circuit voltage model parameters:
K0,K1,K2,K3,K4,K5,K6,K7

• Dynamic equivalent circuit model parameters:
R0, R1, C1, R2, C2

• Charging and discharging efficiencies: ηc, ηd
• Process noise variances: σ2

i , σ
2
h

• Measurement noise variances: σ2
v , σ

2
i

The requirement to estimate all the model parameters makes
the SOC tracking problem more challenging. Further, the
chemical properties of the battery change as a result of
temperature changes, aging, and usage patterns and as a result
these model parameters are subject to change over time. Hence
the model parameters have to be re-estimated over time.

By exploiting the expectation maximization (EM) algorithm
[13], [31], the authors developed a strategy in [8] for SOC
tracking by jointly estimating many of the model parameters
listed above. The EM approach involves the iteration of
parameter estimation and SOC tracking over a large data
window which results in significant computational and mem-
ory requirements. This is not desirable in portable mobile
applications where the power requirement and compactness
of the BFG is a major concern.

In this paper we assume that the OCV parameters
K0,K1, . . . ,K7 of the battery are estimated offline. The
voltage and current measurement error standard deviations,
σv and σi, respectively, are assumed to be available from the
measurement circuitry design. The charging and discharging
efficiencies, ηc and ηd, respectively, are assumed to be known
through calibration. Hence, our objective in this paper is
to develop an online SOC tracking algorithm by assuming
the knowledge of battery capacity Cbatt and the electrical
equivalent model parameters R0, R1, R2, C1 and C2 of the
battery.

III. SOC TRACKING APPROACH

The objective of reduced order filtering is to track xs[k]
while avoiding the need to track the redundant variables
xi1 [k], xi2 [k] and xh[k]. First, let us rewrite (7) in the fol-
lowing form:

xs[k + 1] = xs[k] + ch∆zi[k] + ws[k] (18)

where

ws[k] = −ch∆ni[k] (19)

is the process noise which is white with s.d.

σs = ch∆σi (20)

Now, let us rewrite the voltage measurement (16) as

zv[k] = V0(xs[k]) + a[k]Tb + nD[k] (21)

where

a[k]T =
[
vD[k − 1] vD[k − 2] zi[k] zi[k − 1]

−zi[k − 2] 1
]

(22)

and the voltage drop is given by

vD[k] = zv[k]− V0(xs[k]) (23)

where b is a parameter vector to be estimated and nD[k] is
the measurement noise.

It must be noted that a[k] in (22) is defined in terms of
the voltage drops vD[k − 1] and vD[k − 2]. The estimated
parameters derived in terms of the parameters of the battery
equivalent model in Figure 1 as

b(1) , α(k) = α1 + α2

b(2) , β(k) = α1α2

b(3) = R0

b(4) , Ř1 = (α1 + α2)R0 − (1− α1)R1 − (1− α2)R2

b(5) , Ř2 = α1α2R0 − α2(1− α1)R1 − α1(1− α2)R2,

b(6) , ĥ[k] = xh[k]− α(k)xh[k − 1] + β(k)xh[k − 2]

(24)

The measurement noise nD[k] is zero mean and with
autocorrelation RnD

(l) .
Next, we discuss the significance of the voltage drop in

estimating the parameters b in (21). Using (21), the voltage
drop (23) can be written as

vD[k] = a[k]Tb + nD[k] (25)

Given the voltage drop observations, the above model (25) can
be used to linearly estimate b. However, in order to get the
voltage drop as an observation, one needs the knowledge of
the SOC xs[k] for which a predicted value of SOC, x̂s[k|k−1]
or the updated SOC estimate x̂s[k|k] can be used, i.e.,

vD[k|k] = zv[k]− V0(x̂s[k|k]) (26)

Later, we discuss how the predicted SOC x̂s[k|k − 1] and
updated SOC x̂s[k|k] are obtained (see (31) and (38), respec-
tively.)

Let us now discuss the advantage of the voltage drop model.
All the existing approaches for BFG use the voltage and
current observations, zv[k] and zi[k], for model identification
and SOC tracking.

Consider the conventional voltage observation model (16).
The terms in xh[k] denote the hysteresis voltage which, as
shown in (14), is a function of current i[k], SOC xs[k] and
time k. For example, when a battery experiences a load of
1A (which is heavy in mobile applications) for a few seconds,
the magnitude of the resulting hysteresis is small compared to
when the load was 1A continuously for 30 min. In addition,
the magnitude of the hysteresis is a function of the SOC at
that time as well.

When one uses the voltage observation (16) across battery
terminals for model identification, the hysteresis xh[k] also
needs to be modeled and the model parameters have to be
estimated. A model for hysteresis in terms of SOC, current
and time is nonlinear and not yet fully understood.

Another disadvantage of trying to model and estimate
hysteresis is that it makes online model identification almost



impossible: Since hysteresis is a function of SOC, model
identification requires the data spanning the entire range of
SOC. This might be impossible at times since some applica-
tions might never use the battery from full to empty. Since
hysteresis is also a function of current, model identification
requires usage data spanning the possible load currents applied
for various durations. Hence, complete modeling and model
identification of hysteresis becomes impractical.

It is also important to note that estimating model parameters
offline using sample batteries and then using those parameters
in fuel gauging may not be satisfactory; some of the battery
parameters are known to change based on usage patterns.

In this paper, we entirely avoid hysteresis modeling by
introducing the voltage drop model described above. The
voltage drop vD[k] represents the voltage across the internal
battery model components R0, R1, R2 and xh[k]. The term
xh[k] is purposely introduced in order to account for the errors
in predicted SOC x̂s[k|k−1] that is used to derive the voltage
drop “measurement” v̂D[k]. One could think of xh[k] as an
“instantaneous hysteresis” which must be corrected to zero by
adjusting SOC estimate x̂s[k|k].
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Fig. 2. Generic description of hysteresis in Li-ion battery. The figure
above is used to explain that for a certain OCV (rested battery terminal), there
are many possible values of SOC – depending on the path (in terms of load
current and previous SOC). The true OCV-SOC relationship is unique, which
lies in the middle and is shown in blue.

The OCV-SOC model (2) represents the true OCV-SOC
relationship shown in solid line in Figure 2. Assuming that
x̂s[k|k] = xs[k|k] in the voltage drop (23), the estimated value
of ĥ[k] in (24) will be ĥ[k] = 0. However, ĥ[k] 6= 0 implies
errors in SOC estimates that is used in computing the voltage
drop observation vD[k]. Hence, the SOC tracking algorithm
needs to adjust x̂s[k|k] accordingly. We do this by employing
the following modified observation model in place of (21)

zv[k] = V0(xs[k]) + ã[k]T b̃ + nD[k] (27)

where

ã[k]T =
[
vD[k − 1] vD[k − 2] zi[k] zi[k − 1]

−zi[k − 2]
]

(28)

b̃ =
[
α β R0 Ř1 Ř2

]T
(29)

are obtained by removing the last element in a[k]T and
b, respectively, i.e., without the hysteresis term. Later, we
describe the significance of this modified observation model.

Furthermore, the following covariance is found between the
process noise ws[k] in (18) and the measurement noise nD[k]
in (27):

E
{
ws[k]nD[k]

}
, U [k] = R0ch∆σ2

i (30)

Given the estimate of state of charge, x̂s[k|k], and the
associated variance Ps[k|k], the following EKF recursion uses
the voltage and current measurements zv[k+1], zi[k], zi[k+1]
to yield the updated SOC estimate of x̂s[k+ 1|k+ 1], and its
associated variance Ps[k + 1|k + 1]. These steps also make
sure that the SOC estimates are best adjusted to account for
the covariance of (30) according to [9], Sec.8.3. The filtering
recursions consist of the following:

x̂s[k + 1|k] = x̂s[k|k] + ch[k]∆zi[k] (31)
Ps[k + 1|k] = Ps[k|k] + σ2

s (32)

H[k + 1] =
dzv[k]

dxs[k]

∣∣∣∣
x̂s[k+1|k]

(33)

ẑv[k + 1] = V0(x̂s[k + 1|k]) + ã[k]T b̃[k] (34)
S[k + 1] = H[k + 1]P [k|k]H[k + 1]T (35)

+RnD
(0) + 2H[k + 1]U [k] (36)

G[k + 1] =
P [k + 1|k]H[k + 1]T + U [k]

S[k + 1]
(37)

x̂s[k + 1|k + 1] = x̂s[k + 1|k]

+G[k + 1]
(
zv[k + 1]− ẑv[k + 1]

)
(38)

Ps[k + 1|k + 1] = (1−G[k + 1]H[k + 1])Ps[k + 1|k]

(1−G[k + 1]H[k + 1])T

+G[k + 1]2RnD
(0) (39)

where ch[k] and b̂[k] are the most recent estimates of the
Coulomb counting coefficient and the model parameter vector,
respectively. The effects of autocorrelation terms RnD

(1) and
RnD

(2) in the measurement noise are ignored in the SOC
tracking because it will require the estimation of a larger state
and this is left for the future.

Now, let us briefly discuss the importance of using ã[k]T

and b̃ in the state-space model (18)–(27) for SOC tracking.
Hysteresis can be thought of as an error in the OCV-SOC
characteristic curve (see Figure 2). It is quite difficult to model
and accurately estimate the hysteresis because it varies with
the previous current and SOC (see (14)). However, the true
OCV-SOC relationship can be easily estimated. Indeed, the



V0(xs[k]) in (27) is based on the true OCV-SOC model. Let
us assume that the estimated hysteresis is ĥ[k] = 10 mV.
This means the “perceived OCV” by the filter is 10 mV away
from the actual OCV of the battery. For the BFG algorithm,
the perceived OCV, V0(xs[k]), is directly (and monotonically)
related to the SOC estimate x̂s[k|k]. In other words, if the
perceived OCV of the filter is different from the actual OCV,
so is the filter estimate x̂s[k|k] from the true SOC of the
battery. Hence, when the filter sees a drop of 10 mV in its
predicted terminal voltage ẑv[k+1] in (34), it adjusts its SOC
estimate x̂s[k+1|k+1] in (38) such that the “perceived OCV
error” (or estimated hysteresis H) is (gradually) adjusted to
zero. Hence, a good indication of proper functioning of the
proposed approach is the estimated ĥ[k] being always close to
zero. This summarizes our novel hysteresis modeling approach
of this paper where we do not actually try to model the
hysteresis in terms of its current and SOC dependent paths, but
rather, we force the OCV error “hysteresis” to be zero through
a combination of (i) true OCV modeling, (ii) modeling for
voltage drop, and (iii) filtering.

IV. SIMULATION RESULTS

In this section we provide performance analysis of the pro-
posed BFG. First, we assess the performance using simulated
battery data. Then, we use real data collected through hardware
in the loop (HIL) experiments for performance assessment.

Typical battery usage data was simulated using the dynamic
equivalent model which consists of a series resistance, the
hysteresis component and a single RC circuit. The dynamic
model parameters, assumed constant over the entire simu-
lation, are selected as follows: R0 = 0.2 Ω R1 = 0.1 Ω,
C1 = 50 F, h[0] = 0 V. It is assumed that the data is sampled
at a constant ∆ = 0.1 seconds. Hence, the online model
parameters b =

[
α R0 R̃1 H

]T
can be written as α = 0.9802

(see (10)), R0 = 0.2, R̃1 = 0.1941, H = h[k] − α1h[k − 1]
where h[k] is simulated as a constant bias. It is assumed that
the true battery capacity is Cbatt = 1.5 Ah.

The OCV parameters are obtained by performing an OCV
test on a Samsung battery (with serial number EB575152).
This resulted in the following values for the OCV parameters:
K0 = −3.0927, K1 = 43.3102, K2 = −7.4126, K3 =
0.7908, K4 = −0.0359, K5 = −30.3610, K6 = 59.0316,
K7 = −0.3932.

the battery usage profile i[k] was created in terms of load
current as shown in Figure 3 (top). A random white noise
with s.d. σi = 10−3A was added to i[k] (see (6)) in order
to simulate the measured current zi[k]. The current through
R1 is simulated for reference (shown in the second plot from
the top of Figure 3). The true, noiseless, SOC is computed
by Coulomb counting (18) by assuming that xs[0] = 1 and
assuming the knowledge of i[k], i.e., by making zi[k] = i[k]
and ws[k] = 0 in (18); the true value of SOC, xs[k], is then
computed. Now, assuming that the initial SOC, xs[0] = 1, the
measured battery terminal voltage was simulated by making
use of the state-space model (18), (27) with the voltage
measurement noise standard deviation σv = 10−3 V. In Figure

3, we show these simulated quantities: true current profile
i[k], the current x1[k] through R1, true SOC xs[k] and the
(simulated) noisy battery terminal voltage zv[k], respectively,
are shown from top to bottom in Figure 3. The simulated
voltage zv[k] and current information zi[k] are fed to the BFG
and the estimated parameters, capacity and SOC outputs of the
BFG were recorded for analysis.

Next, we analyze the SOC tracking performances of the
algorithm. First, we define the SOC tracking error as

εxs [k] = 100

√√√√ 1

M

M∑
m=1

(
xs[k]− x̂s,m[k]

)2
(40)

where εxs
[k] is in percentage and x̂s,m[k] is the estimated

SOC at time k of the mth Monte-Carlo run.
Figure 4 shows the estimated SOCs as well as the SOC

tracking errors. We also use this figure to demonstrate our
novel state space model and the linear parameter estimation
strategy for SOC tracking: First, we demonstrate SOC tracking
based on model parameters estimated through conventional,
unweighted LS method explained. The plots corresponding to
this are labeled as LS1. Then, we demonstrate SOC tracking
based on the new, weighted LS parameter estimation which
is more accurate. The plots corresponding to this second
approach are labeled as LS2.

V. CONCLUSIONS

This paper presented a novel state of charge tracking ap-
proach for Li-ion batteries. The proposed approach employs
linear approach for parameter estimation and a robust online
method for capacity estimation.
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Fig. 3. Validation data. From top to bottom: Simulated load profile i[k],
computed current x1[k] through R1, true SOC xs[k] and noisy battery
terminal voltage zv [k].
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Fig. 4. SOC tracking performance.
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